1.

Here are the attendances from the last 3 months at a rugby club.

Month	Attendance
February	18,655
March	31,402
April	27,092

What is the approximate total of February and March?
What is the approximate difference between March and April?
What is the approximate total of the three months?
April and May had an approximate total of 50,000
Estimate the attendance in May.
2. Estimate the answers to the calculation below.

$13,369 \mathrm{~m}-5 \frac{3}{4} \mathrm{~km}=$?

Round each number to the nearest 1,000. What is the approximate answer?
Round to the nearest 10,000 . What is the approximate answer?
What is the difference between the two answers?
Which was the most accurate estimate?
Is there a better way to estimate for this equation?
3. Match the children's statements to the approximate perimeter length of each child's rectangle.

Look at the measurements carefully
1.

2.

A $80,000 \mathrm{~m}$

B $22,000 \mathrm{~m}$

$1,800 \mathrm{~cm}$

Which estimate is inaccurate?
a) $\prod_{0}^{25,000}$
b) $\prod_{10,000}^{25,000}$
C) $T_{0}^{25,000}$

Explain how you know.

Here are the attendances from the last 3 months at a rugby club.

Month	Attendance
February	18,655
March	31,402
April	27,092

What is the approximate total of February and March?
What is the approximate difference between March and April?
$19,000+31,000=50,000$
$31,000-27,000=4,000$
$50,000+27,000=77,000$
What is the approximate total of the three months?
April and May had an approximate total of 50,000
27,092 + ? = 50,000 approx
50,000-27,000 = 23,000
Estimate the attendance in May.
2. $13,000-6,000=7,000$
$10,000-10,000=0$
Rounding to 10.000 doesn't work.
The difference between the two answers is 7,000.
You could round to the nearest 500
$13,500-6,000=7,500-$ which is more accurate.
3. $1 \mathrm{C}, 2 \mathrm{~B}, 3 \mathrm{~A}$

