Green
 Formal methods of multiplication and division

Identify the answer using the part-whole model.

Solve the calculation			
101010101111			
$10101010111^{1} 1$		x	
	x $4=$		

Which calculation matches the number sentence?
A.

	2	4
\mathbf{x}		4
	1	6
	(4×4)	
	8	0
	(4×20)	
	6	

B.

	2	4
\mathbf{x}		4
	1	6
	(4×4)	
	8	0
	(4×20)	
	0	

Yellow
 Formal methods of multiplication and division

1. Finlay is playing a maths game at the village fayre. He needs to sort the ducks into the correct sections of the pond to win a prize. Help Finlay sort the ducks into the pond by dividing them by 3 or 4 .

Explore three other numbers that could be put in the centre of the Venn diagram.

2. Staff at the aquarium are trying to sort their delivery of fish into 4 tanks. They need to make sure that each tank has an equal amount of each type of fish.

Investigate how many of each type of fish could be placed in each tank.

Red
 Formal methods of multiplication and division

8a. Use the digit cards to complete the calculation.

7. Solve the calculation below in the most efficient way.

124×7

1. A rollercoaster at the theme park runs between five and nine times each day depending on how busy the theme park is.

There are five carriages on the rollercoaster.
Each carriage can hold between four and eight people. There must be a minimum of 4 people in each carriage before the rollercoaster can set off.

Investigate the different number of people that can use the rollercoaster each day.
What is the fewest number of people that can ride the rollercoaster?
What is the greatest number of people?
2. Brooke is putting some numbers into the function machines below. Unfortunately, she can't remember what functions she asked each machine to complete!

She knows the number that she inputted into the machine and the output number.

Each machine has a different function.
The function is between 2 and 12.
One function machine always produces an even answer.

Using the clues above, investigate the possible functions on each of the machines.

Green Answers

Formal methods of multiplication and division

Circle all the factor pairs of 50.
14×3
2×25
20×3

21×2
18×3

12×6
 17×3

True or false?

	3	3	
\mathbf{x}		7	
	2	1	(7×3)
2	1	0	(7×30)
2	3	1	

False: $\mathbf{3 3 \times 7 = 2 3 1}$

Solve the calculation.
10101010111111
1010101011111
10101010111111
$\begin{array}{lllllllll}10 & 10 & 10 & 10 & 1 & 1 & 1 & 1 & 1\end{array} 1$

Which calculation matches the number sentence?
A.

B.
2 4
(4 $\times 4$) (4×20)
$24 \times 4=96$

Yellow Answers
 Formal methods of multiplication and division

1. Finlay is playing a maths game at the village fayre. He needs to sort the ducks into the correct sections of the pond to win a prize. Help Finlay sort the ducks into the pond by dividing them by 3 or 4 .

Explore three other numbers that could be put in the centre of the Venn diagram.
Various answers, for example:

2. Staff at the aquarium are trying to sort their delivery of fish into 4 tanks. They need to make sure that each tank has an equal amount of each type of fish.

Investigate how many of each type of fish could be placed in each tank. Various answers, for example: Fish A: $32 \div 4=8$; Fish B: $36 \div 4=9$; Fish C: $64 \div 4=16$; Fish D: 44 $\div 4=11$.

Red Answers Formal methods of multiplication and division

7. Solve the calculation below in the most efficient way.

1. A rollercoaster at the theme park runs between five and nine times each day depending on how busy the theme park is.

There are five carriages on the rollercoaster.
Each carriage can hold between four and eight people. There must be a minimum of 4 people in each carriage before the rollercoaster can set off.

Investigate the different number of people that can use the rollercoaster each day.
Various answers, for example: $7 \times 5 \times 6=210$ people
What is the fewest number of people that can ride the rollercoaster? $5 \times 5 \times 4=100$ people
What is the greatest number of people? $9 \times 5 \times 8=360$ people
2. Brooke is putting some numbers into the function machines below. Unfortunately, she can't remember what functions she asked each machine to complete!

She knows the number that she inputted into the machine and the output number.

Each machine has a different function.
The function is between 2 and 12.
One function machine always produces an even answer.

Using the clues above, investigate the possible functions on each of the machines.
Various answers, for example: Shown above.

