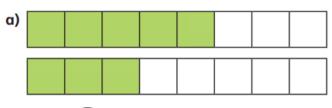
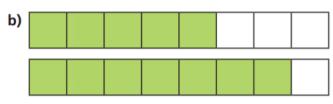
Shade the bar models to represent the fractions.

a) Shade $\frac{1}{2}$ of the bar model.



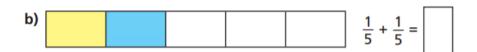
b) Shade $\frac{2}{4}$ of the bar model.

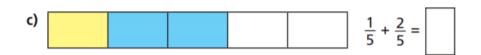

1	l	
I	l	
1	l	
	l	

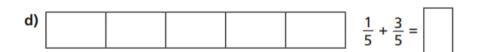
What do you notice?

Write <, > or = to compare the fractions.
Use the bar models to help you.

 $\frac{5}{8}$ $\frac{3}{8}$

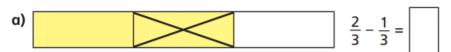



 $\frac{5}{8}$ $\frac{7}{8}$


Complete	the	additions
Complete	tile	additions

Use the bar models to help you.

a) $\frac{1}{3} + \frac{1}{3} =$



Complete the subtractions.

Use the bar models to help you.

b)
$$\frac{2}{5} - \frac{1}{5} =$$

c)
$$\frac{3}{5} - \frac{1}{5} =$$

d)
$$\frac{4}{5} - \frac{1}{5} =$$

2 Jack has $\frac{7}{8}$ of a chocolate bar.

He eats $\frac{4}{8}$ of the chocolate bar.

What fraction of the chocolate bar does he have left?

Yellow

2 Shade the circles and complete the additions.

a)

b)

$$\frac{1}{8} + \frac{3}{8} =$$

$$\frac{5}{8} + \frac{1}{8} =$$

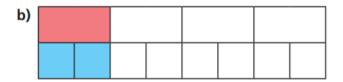
6 Kim has read $\frac{6}{7}$ of her book.

Tom has read $\frac{2}{7}$ of his book.

a) Shade the bar models to represent this information.

Kim

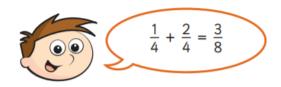
Tom				


b) How much more has Kim read than Tom?

Kim has read more of her book than Tom.

Complete the equivalent fractions.

a)


$$\frac{1}{2} = \frac{\boxed{}}{8}$$

$$\frac{1}{4} = \frac{2}{\boxed{}}$$

- a) $\frac{1}{5}$ $\frac{3}{5}$
- d) $\frac{6}{7}$ $\frac{2}{7}$
- b) $\frac{2}{5}$
- e) $\frac{6}{13}$ $\frac{12}{13}$
- c) $\frac{2}{7}$ $\frac{6}{7}$
- f) $\frac{13}{15}$ $\frac{13}{15}$
- Teddy is adding fractions.

Explain what Teddy has done wrong. Show your working out.

Red

a)
$$\frac{8}{9} - \frac{9}{9} = \frac{7}{9}$$

e)
$$\frac{7}{10} - \frac{5}{10} = \frac{1}{10} + \frac{1}{10}$$

b)
$$\frac{5}{11} - \frac{1}{11} = \frac{4}{11}$$

f)
$$\frac{1}{4} - \frac{1}{4} = \frac{1}{4} + \frac{1}{4}$$

c)
$$\frac{8}{9} - \frac{9}{9} = \frac{3}{9} + \frac{4}{9}$$
 g) $\frac{5}{5} - \frac{2}{5} = \frac{1}{5} + \frac{2}{5}$

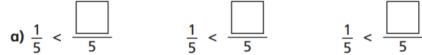
g)
$$\frac{2}{5} - \frac{2}{5} = \frac{1}{5} + \frac{2}{5}$$

d)
$$\frac{7}{9} - \frac{5}{9} = \frac{9}{9} - \frac{4}{9}$$

h)
$$\frac{4}{5} + \frac{1}{5} = \frac{3}{7} - \frac{2}{7} + \frac{2}{7}$$

Annie has baked 12 muffins.

She puts them into 2 boxes.



What fraction of the muffins could she put in each box? Complete the table to show different possibilities.

One has been done for you.

Box 1	Box 2
1/12	<u>11</u> 12

What could the missing numerators and denominators be? Give three examples for each.

b)
$$\frac{1}{5} < \frac{1}{1}$$

$$\frac{1}{5} < \frac{1}{\Box}$$

$$\frac{1}{5}$$
 < $\frac{1}{\boxed{}}$

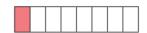
Use the fraction wall to complete the equivalent fractions.

1/3			1/3				<u>1</u> 3				
$\frac{1}{6}$ $\frac{1}{6}$		1/6		<u>1</u>	<u>1</u>		<u>1</u>				
<u>1</u>		<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	19	<u> </u>	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9		<u>1</u> 9

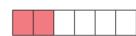
a)
$$\frac{1}{3} = \frac{6}{6}$$

a)
$$\frac{1}{3} = \frac{\boxed{}}{6}$$
 d) $\frac{2}{3} = \frac{6}{\boxed{}}$

b)
$$\frac{1}{3} = \frac{9}{9}$$


e)
$$\frac{4}{6} = \frac{6}{6}$$

c)
$$\frac{2}{3} = \frac{4}{3}$$


c)
$$\frac{2}{3} = \frac{4}{6}$$
 f) $\frac{1}{3} = \frac{6}{6} = \frac{9}{9}$

Match each bar model to its equivalent fraction.

