Q1.

Anna has four different triangles.

Complete the table to show the size of the angles in each triangle.

Type of triangle	Angle 1	Angle 2	Angle 3		
Isosceles	90°				
Right-angled	80°				
Isosceles	70°				
Isosceles	70°				

Here is a triangle.

Two of its sides are 4 cm and two of its angles are 45°

Join dots to make a different triangle.

Make only one of its sides 4 cm and only one of its angles 45°

•	·		•	·		•	•	•	•	·
•				*				•		*
	*	4	•		4	•	•	1		
٠						·			٠	
			•	•	×					
		4								
•			+							

Q2.

Here is a dial.

The pointer on this dial turns in a **clockwise** direction. The pointer is at $\mathbf{0}$.

Which number does it point to after a turn of 270°?

The pointer moves from **10** to **11** How many **degrees** does it turn through? The diagram shows a rectangle.

Calculate angles x and y.

y =

Q5.

Draw a **pentagon** that has **three right angles**.

						2

Work out the value of **angle** *x* <u>without</u> using an angle measurer.

You MUST explain how you worked out your answer.