GREEN ANSWERS

Accurately drawn shapes. Get an adult to check.

YELLOW ANSWERS

All answers must be accurately drawn

$\$$ On a piece of squared paper, accurately draw the shapes.

- A square with perimeter 16 cm .
- A rectangle with an area of $20 \mathrm{~cm}^{2}$.
- A right-angled triangle with a height of 8 cm and a base of 6 cm .
- A parallelogram with sides 3 cm and 5 cm .
- A square with sides 4 c long
- Sides may vary. 10 cm by $2 \mathrm{~cm}, 5 \mathrm{~cm}$ by $4 \mathrm{~cm}, 20 \mathrm{~cm}$ by 1 cm
- Right angle must be 90 degrees with lengths draw accurately

$$
\bullet
$$

Example of parallelogram. Sides must be drawn accurately

Draw the triangle accurately on squared paper to work out the missing length. Measure the size of angles A and B.

- Accurately drawn triangle. Ask adult to measure to check answer.

Rosie has been asked to draw this triangle on plain paper using a protractor.

Create a step-by-step plan to show how she would do this.

- Draw the base 7 cm long.
- Measure 40 degrees from each vertices.
- Draw the other two lines with a ruler until they cross.

RED ANSWERS

Mr Harrison is designing a slide for the	Children will have to use the scale to playground. give their answer in m once they have measured it in cm.
Use a scale of 1 cm to represent 1 m.	The ladder should be approximately 4.5 m
Draw a scale diagram.	
Use the diagram to find out how long Mr	
Harrison needs the ladder to be.	

What is the size of each interior angle of the regular shape below. Accurately draw a regular pentagon with side length 5 cm .	108°
Eva has drawn a scalene triangle. Angle A is the biggest angle. Angle B is 20° larger than angle C . Angle C is the smallest angle, and it is 70° smaller than angle A. Use a bar model to help you calculate the size of each angle, then construct Eva's triangle. Is there more than one way to construct the triangle?	Angle A: 100° Angle B: 50° Angle C: 30° These angles would work with different side lengths.

