Green answers

1.
2. $5 / 7$
3. $4 / 5$
4. $4 / 5$
5. $5 / 6$
6. $6 / 8$
7. $7 / 7$ or 1 whole
8. $8 / 9$
9. $7 / 8$
10. 9/10
11. $11 / 12$
12. 9/11
13. $13 / 15$
14.

1a. $A-\frac{3}{4}, B-\frac{4}{5}$
2a.

3a. False; answer should be $\frac{4}{7}$
4a. $\frac{7}{10}$
1b. $A-\frac{4}{5}, B-\frac{6}{10}$
2b.

3b. True
4b. $\frac{5}{6}$

Yellow answers

1. $a=3 / 5$
$b=5 / 7$
$C=3 / 4$
$d=7 / 10$
2.

Look at the problem $\frac{2}{4}+\frac{1}{4}=\frac{3}{4}$. Why does the 4 stay as $4-$ why isn't it $\frac{2}{4}+\frac{1}{4}=\frac{3}{8} ?$

The 4 stays as 4 because it is the denominator and that doesn't change because it shows us how many pieces or how much the whole is split into
3.

5a. $A-\frac{8}{12}, B-\frac{6}{8}$
6 a.

$$
\frac{2}{9}+\frac{1}{9}+\frac{4}{9}=\frac{7}{9}
$$

7a. True
8a. $\frac{9}{10}$

5b. $A-\frac{8}{10}, B-\frac{6}{11}$
6b.

7b. False; it should be $\frac{6}{8}$
8b. $\frac{9}{12}$

Red answers

1. In 5 a and 5 b ask an adult to check your answers

4a. Kamir is incorrect because he has added the denominators instead of the numerators. The correct answer is $\frac{6}{5}$
5a. Various possible answers, for example:
$\frac{0}{10}+\frac{6}{10}, \frac{1}{10}+\frac{5}{10}$ and $\frac{2}{10}+\frac{4}{10}$
6a. $\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=\frac{7}{8}$
4b. Georgina is correct because she has only added the numerators. The denominators have stayed the same.
5b. Various possible answers, for example:
$\frac{0}{10}+\frac{7}{10}, \frac{1}{10}+\frac{6}{10}$ and $\frac{2}{10}+\frac{5}{10}$
6b. $\frac{5}{12}+\frac{2}{12}+\frac{2}{12}=\frac{9}{12}$
2. Count forward from 5 in quarters

5	$51 / 4$	$51 / 2$	$53 / 4$	6	$61 / 4$	$61 / 2$	$63 / 4$	7

Note $1 / 2$ is the same as $2 / 4$

3. Complete the diagram

$$
\begin{aligned}
& 53 / 5+31 / 5=84 / 5 \\
& 42 / 5+42 / 5=84 / 5 \\
& 7+14 / 5=84 / 5 \\
& 62 / 5+22 / 5=84 / 5 \\
& 31 / 5+53 / 5=84 / 5 \\
& 84 / 5+0=84 / 5 \\
& 6 / 5(11 / 5)+73 / 5=84 / 5
\end{aligned}
$$

